
Contents
1 Technical and Organizational Measures (TOMs) for PII Guardian API 1

1 Technical and Organizational Measures (TOMs) for PII
Guardian API

Effective Date: August 25, 2025

1.0.1 1. Introduction

This document outlines the Technical and Organizational Measures (TOMs) implemented
within the PII Guardian API to ensure a level of security appropriate to the risk, in accor-
dance with Article 32 of the General Data Protection Regulation (GDPR). The software is
designed as a self-hosted solution, empowering the data controller to maintain full custody of
their data while leveraging the application’s built-in security controls.

1.0.2 2. Data Segregation & Access Control

Measures to ensure that data is accessible only by authorized personnel and that data from
different tenants is strictly isolated.

1.0.2.1 2.1. Multi-Tenant Data Isolation Description
The application enforces strict data segregation between tenants at the database query level.
An automated filtering mechanism ensures that all data retrieval operations are scoped to
the authenticated user’s or API key’s tenant ID, making it architecturally impossible for one
tenant to access another’s data.
Implementation Details
This is implemented via a SQLAlchemy event listener (_add_tenant_filter) that injects a
WHERE tenant_id = :id clause into all SELECT statements for tenant-scoped models.
Evidence: app/db/session.py:56-91

1.0.2.2 2.2. Role-Based Access Control (RBAC) Description
The system implements a two-role model (admin, viewer) to enforce the principle of least
privilege. Administrative functions—such as creating or deleting users, managing API keys,
and defining custom rules—are restricted to users with the admin role.
Implementation Details
API endpoints are protected by FastAPI dependencies that verify the authenticated user’s role.
The get_current_admin_user dependency explicitly checks for the admin role before allowing
access to sensitive operations.
Evidence: app/api/deps.py:86-95

1.0.3 3. Authentication & Credential Security

Measures to ensure the secure handling and storage of user and system credentials.

1



1.0.3.1 3.1. Secure Credential Storage Description
User passwords and API keys are never stored in plaintext. The system uses the bcrypt
algorithm, a strong, adaptive, and salted hashing function, to protect all stored credentials
against offline attacks.
Implementation Details
The passlib library is configured to use bcrypt as the default hashing scheme for both pass-
words and API keys.
Evidence: app/core/security.py:15-25

1.0.3.2 3.2. Timing Attack Mitigation Description
API key authentication is designed to be resistant to timing attacks. In cases where an API key
prefix is not found in the database, the system performs a verification against a dummy hash
to ensure that failed lookups take a similar amount of time as successful ones, preventing key
enumeration.
Implementation Details
The authenticate_and_get_tenant function includes a specific branch to perform a constant-
time comparison even when a key is not found.
Evidence: app/crud/crud_api_key.py:108-120

1.0.4 4. Application & Network Security

Measures to protect the application from common web and network-based vulnerabilities.

1.0.4.1 4.1. Server-Side Request Forgery (SSRF) Prevention Description
The webhook notification service includes a security check to prevent SSRF attacks. Before
sending an outbound request, the service resolves the webhook’s hostname and verifies that
it does not point to a private, loopback, or reserved IP address.
Implementation Details
The _is_private_ip helper function performs a DNS lookup and checks the resolved IP
against known private address ranges (e.g., 10.0.0.0/8, 192.168.0.0/16).
Evidence: app/services/webhook_service.py:26-40

1.0.4.2 4.2. Regular Expression Denial of Service (ReDoS) Mitigation Description
To protect against malicious or inefficient regular expressions, all pattern-matching opera-
tions within the PII scanning engine are subject to a strict, short timeout. This prevents a
single request from consuming excessive CPU resources and impacting service availability.
Implementation Details
The regex library is used, and its finditer method is called with a configurable timeout pa-
rameter.
Evidence: app/core/config.py:117-119, app/services/pii_service.py:204-206

2



1.0.5 5. Data Handling & Processing Security

Measures to ensure the secure handling of data during processing, such as file uploads.

1.0.5.1 5.1. Secure File Handling Description
Filenames provided during file uploads are sanitized to prevent path traversal attacks. The
system removes directory separators and other potentially malicious characters to ensure
that files can only be written to the intended storage location.
Implementation Details
The secure_filename utility, adapted from Werkzeug, is used to sanitize all filenames before
they are passed to the object storage service.
Evidence: app/core/utils.py, app/api/v1/endpoints/scan.py:214-215

1.0.6 6. Logging & Auditing

Measures to ensure that logs provide necessary operational insight without exposing sensitive
information.

1.0.6.1 6.1. Automated Redaction of Sensitive Data in Logs Description
The application’s structured logging system includes an automatic redaction processor. This
processor scans all log event data for keys commonly associated with sensitive information
(e.g., password, token, api_key, secret) and redacts their corresponding values before the
log is written.
Implementation Details
A custom structlog processor (redact_processor) uses a regular expression (SENSITIVE_KEYS_PATTERN)
to identify and redact sensitive fields recursively within the log’s event dictionary.
Evidence: app/core/logging_config.py:16-41

3


	Technical and Organizational Measures (TOMs) for PII Guardian API

