Pll Guardian Frontend

The PIl Guardian frontend is a marketing and demonstration site built with Next.js (App Router)
and TypeScript. It serves as a public “shop window” for the PIl Guardian API, providing a live
redaction demo, feature highlights, and links to coverage and compliance docs. The app is fully
containerized and designed for easy deployment and rebranding.

1) Technology Stack

Category Technology Version* Purpose

Framework Next.js (App Router) *see package.json Server + client components, routing, metadata
Language  TypeScript *see package.json Static typing

Styling Tailwind CSS v4 *see package.json Utility-first styling; Typography plugin for legal/comy
Animations Framer Motion *see package.json Page and section animations

Icons Lucide React *see package.json SVGicons

Packaging  Docker — Reproducible builds & deploys

* Use the exact versions from package. json for due diligence.

2) Project Structure

frontend/
— public/
— coverage/ # HTML coverage report (entry: index.html)
— compliance/ # Compliance PDFs/HTML (served directly)
— src/
— app/
— layout.tsx # Root layout (fonts, backgrounds, metadata)
— Template.tsx # Framer Motion page transitions
— page.tsx # Home (server component) -> renders client
— HomePageClient.tsx # Interactive demo + “Deep Dive” buttons
— globals.css # Tailwind base + global utilities
— compliance/
- page.tsx # In-site Compliance Docs Portal (/compliance)
— legal/
layout.tsx Prose layout

H H

privacy/page.tsx
security/page.tsx
terms/page.tsx

— components/

L animations/
FadeSection.tsx
StickyNavWrapper.tsx

— Dockerfile

— next.config.ts

— tailwind.config.ts
— tsconfig.json

Privacy (includes telemetry disclaimer)




3) Core Components & Logic
3.1 Rendering Model

* src/app/page.tsx is a Server Component that sets metadata and renders the interactive

client.

* src/app/HomePageClient.tsx is a Client Component ("use client"), responsible for

state, user input, and APl communication.

3.2 Live Demo API Interaction

* Endpoints:

- GET /v1/scan/rule-packs (populate rule pack options)
- POST /vl1/scan/redact (perform redaction)

Config: NEXT PUBLIC API BASE URL defines the backend base URL.
Auth: X-API-Key header uses NEXT PUBLIC DEMO API KEY.

DEMO_PACK_STRICT (not "DEMO_PACK").

Rule Packs: The Ul lets users pick one or more packs from a curated list; the default is

* Errors: Non-2xx responses are parsed (if JSON) and shown in the Ul; aborts are handled

gracefully.

3.3 UX & Animations

* Page transitions: Template.tsx uses Framer Motion for subtle route transitions.

* Sticky header: StickyNavWrapper.tsx applies a blurred, semi-transparent header on scroll.
* Section reveals: FadeSection.tsx fades content into view using Intersection Observer +

motion variants.

4) Configuration (Environment)

These are read at build/runtime (container or host env):

Env Var Purpose Used In

NEXT PUBLIC API BASE URL Backend base URL HomePageClient. tsx, Dockerfile
NEXT PUBLIC DEMO API KEY Demo API key for public Ul HomePageClient.tsx

NEXT PUBLIC APP_NAME Branding (header/footer) HomePageClient.tsx

NEXT PUBLIC CONTACT EMAIL Footer + Privacy contact mailto HomePageClient.tsx, privacy/p
NEXT PUBLIC COVERAGE URL Link to coverage report entry HomePageClient. tsx (defaults to
NEXT PUBLIC COMPLIANCE PACK URL Optional direct link to a key PDF  HomePageClient.tsx trust badge
NEXT PUBLIC COMPLIANCE PORTAL URL Compliance Portal link HomePageClient.tsx (defaults to

Note: Variables are injected by Next.js at build time (public-prefixed). There is no
docker-compose.yml requirement; the Dockerfile accepts build args or you can set
envs at runtime.

5) Styling

* Tailwind v4 powers the Ul; globals.css includes base directives, a few global utilities (e.g.,

.btn-cta), and scrollbar tweaks.



* Typography plugin is applied to legal/compliance sections for readable prose.

* Fonts: Inter via next/font.

* No bespoke design system; classes are co-located in components for ease of
resale/rebranding.

6) Deep Dive & Compliance

* Pytests Coverage Report: The “Deep Dive” button links to NEXT PUBLIC COVERAGE_ URL
(default /coverage/index.html).

+ Compliance Docs Portal: The second button opens /compliance, a portal that auto-lists
public/compliance/*.pdf and .html documents as cards (served directly, typically noindex
via headers).

* Acquire link: Third button points to your Acquire.com listing.

7) Privacy & Telemetry

The Privacy page explicitly documents telemetry:

* We collect usage metadata only (tenant/API key, endpoint, timestamp, status, latency,
request size).

* We do not collect request content (no text/files/Pll stored).

* Users can opt out by self-hosting or disabling telemetry.

* Contact email is driven by NEXT _PUBLIC CONTACT_ EMAIL.

8) Build & Deployment
Local Dev

npm install
npm run dev

Production (Docker)

* Multi-stage Dockerfile: builder compiles Next.js; runner serves the app (next start).
* Env injection: set NEXT PUBLIC * at build (as build args) or runtime (as env).
 Example:

docker build -t pii-guardian-frontend .

docker run -p 3000:3000 \
-e NEXT PUBLIC API BASE URL="http://localhost:8000" \
-e NEXT PUBLIC DEMO API KEY="demo-key" \
pii-guardian-frontend

9) Roadmap Ideas (optional for buyers)

* Admin Ul for tenants, API keys, and custom rules.

* Interactive API explorer for additional endpoints.

* Component extraction to smaller units if the app grows (e.g., HeroSection, DemoBox,
FeatureGrid).






	PII Guardian Frontend
	1) Technology Stack
	2) Project Structure
	3) Core Components & Logic
	3.1 Rendering Model
	3.2 Live Demo API Interaction
	3.3 UX & Animations

	4) Configuration (Environment)
	5) Styling
	6) Deep Dive & Compliance
	7) Privacy & Telemetry
	8) Build & Deployment
	Local Dev
	Production (Docker)

	9) Roadmap Ideas (optional for buyers)


